Validation of likelihood ratio methods for forensic evidence evaluation handling multimodal score distributions

نویسندگان

  • Rudolf Haraksim
  • Daniel Ramos-Castro
  • Didier Meuwly
چکیده

This article presents a method for computing Likelihood Ratios (LR) from multimodal score distributions produced by an Automated Fingerprint Identification System (AFIS) feature extraction and comparison algorithm. The AFIS algorithm used to compare fingermarks and fingerprints was primarily developed for forensic investigation rather than for forensic evaluation. The computation of the scores is speed-optimized and performed on three different stages, each of which outputs discriminating scores of different magnitudes together forming a multimodal score distribution. It is worthy mentioning that each fingermark to fingerprint comparison performed by the AFIS algorithm results in one single similarity score (e.g. one score per comparison). The multimodal nature of the similarity scores can be typical for other biometric systems and the method proposed in this work can be applied in similar cases, where the multimodal nature in similarity scores is observed. In this work we address some of the problems related to modelling such distributions and propose solutions to issues like data sparsity, dataset shift and over-fitting. The issues mentioned affect the methods traditionally used in the situation when a multimodal nature in the similarity scores is observed (a Kernel Density Functions (KDF) was used to illustrate these issues in our case). Furthermore, the method proposed produces interpretable results in the situations when the similarity scores are sparse and traditional approaches lead to erroneous LRs of huge magnitudes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation.

This Guideline proposes a protocol for the validation of forensic evaluation methods at the source level, using the Likelihood Ratio framework as defined within the Bayes' inference model. In the context of the inference of identity of source, the Likelihood Ratio is used to evaluate the strength of the evidence for a trace specimen, e.g. a fingermark, and a reference specimen, e.g. a fingerpri...

متن کامل

Likelihood ratio data to report the validation of a forensic fingerprint evaluation method

Data to which the authors refer to throughout this article are likelihood ratios (LR) computed from the comparison of 5-12 minutiae fingermarks with fingerprints. These LRs data are used for the validation of a likelihood ratio (LR) method in forensic evidence evaluation. These data present a necessary asset for conducting validation experiments when validating LR methods used in forensic evide...

متن کامل

Score-based likelihood ratios for handwriting evidence.

Score-based approaches for computing forensic likelihood ratios are becoming more prevalent in the forensic literature. When two items of evidential value are entangled via a scorefunction, several nuances arise when attempting to model the score behavior under the competing source-level propositions. Specific assumptions must be made in order to appropriately model the numerator and denominato...

متن کامل

Posterior distributions for likelihood ratios in forensic science.

Evaluation of evidence in forensic science is discussed using posterior distributions for likelihood ratios. Instead of eliminating the uncertainty by integrating (Bayes factor) or by conditioning on parameter values, uncertainty in the likelihood ratio is retained by parameter uncertainty derived from posterior distributions. A posterior distribution for a likelihood ratio can be summarised by...

متن کامل

Scoring and direct methods for the interpretation of evidence in forensic speaker recognition

In forensic speaker recognition, the strength of evidence is estimated using the likelihood ratio, which is the relative probability of observing the evidence, given the hypothesis that the suspect is the source of the questioned recording and the hypothesis that anyone else in a relevant potential population is its source. In order to calculate the likelihood ratio we use two approaches; one, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IET Biometrics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017